If $$0 < \theta < 90^\circ$$, $$3b\operatorname{cosec}\theta=a\sec\theta$$ and $$3a\sec\theta-b\operatorname{cosec}\theta=8$$, then the value of $$9b^2 + a^2$$ is:
Given, $$3b\operatorname{cosec}\theta=a\sec\theta$$
$$\Rightarrow$$ Â $$b\operatorname{cosec}\theta=\frac{a\sec\theta}{3}$$
$$3a\sec\theta-b\operatorname{cosec}\theta=8$$
$$\Rightarrow$$ Â $$3a\sec\theta-\frac{a\sec\theta\ }{3}=8$$
$$\Rightarrow$$ Â $$a\sec\theta\left(3-\frac{1\ }{3}\right)=8$$
$$\Rightarrow$$ Â $$a\sec\theta\left(\frac{8}{3}\right)=8$$
$$\Rightarrow$$ Â $$a\sec\theta=3$$ .................(1)
$$3b\operatorname{cosec}\theta=a\sec\theta$$
$$\Rightarrow$$ Â $$\frac{3b}{\sin\theta\ }=\frac{a}{\cos\theta\ }$$
$$\Rightarrow$$ Â $$a\tan\theta\ =3b$$
$$\Rightarrow$$ Â $$a^2\tan^2\theta\ =9b^2$$
$$\Rightarrow$$ Â $$a^2\left(\sec^2\theta\ -1\right)=9b^2$$
$$\Rightarrow$$ Â $$a^2\sec^2\theta\ -a^2=9b^2$$
$$\Rightarrow$$ Â $$3^2-a^2=9b^2$$ (From 1)
$$\Rightarrow$$ Â $$9b^2+a^2=9$$
Hence, the correct answer is Option B
Create a FREE account and get: