In $$\triangle$$ ABC, MN $$\parallel$$ BC, the area of quadrilateral MBCN=130 sqcm. If AN : NC = 4 : 5, then the area of $$\triangle$$ MAN is:
AN : NC = 4 : 5
AC = AN + NC = 4 +Â 5 = 9
MN $$\parallel$$ BC
So,
$$\triangle$$ ABC ~Â $$\triangle$$ MAN
$$\frac{Area of \triangle MAN}{Area of \triangle ABC} = \frac{4^2}{9^2}$$
$$\frac{Area of \triangle MAN}{Area of \triangle ABC} =Â \frac{16}{81}$$
Let the area of $$\triangle MAN$$ be 16x and $$\triangle ABC$$ be 81x.
Area of quadrilateral MBCN =130 sqcm
Area of $$\triangle ABC$$ - area of $$\triangle MAN$$ =130 sqcm
81x - 16x = 130
x = 130/65 = 2
Area of $$\triangle$$ MAN = 16x = 16 $$\times$$ 2 = 32 sqcm.
Create a FREE account and get: