Question 56

If $$x, y, z$$ are three integers such that $$x + y = 8, y + z = 13$$ and $$z + x = 17$$, then the value of $$\frac{x^2}{yz}$$ is:

Solution

x + y = 8 ----(1)

y + z = 13 ----(2)

z + x = 17 ----(3)

Eq (1) + (2) + (3),

2(x + y + z) = 8 + 13 + 17

x + y + z = 38/2 = 19 ----(4)

From eq (3) and (4),

x + 13 = 19

x = 6

From eq(3),

z + x = 17

z + 6 = 17

z = 11

From eq(2),

y + z = 13

y + 11 = 13

y = 2

$$\frac{x^2}{yz}$$

= $$\frac{6^2}{2 \times 11}$$

= 36/22 = 18/11


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App