If $$\sin(20 + x)^\circ = \cos 60^\circ, 0 \leq (20 + x) \leq 90$$, then find the value of $$2 \sin^2(3x + 15)^\circ - \cosec^2(2x + 10)^\circ$$.
$$\sin(20+x)^{\circ}=\cos60^{\circ}$$
$$\sin(20+x)^{\circ}=\sin30^{\circ}$$
$$20+x=30$$
$$x=10$$
$$2\sin^2(3x+15)^{\circ}-\operatorname{cosec}^2(2x+10)^{\circ}=2\sin^245^{\circ}-\operatorname{cosec}^230^{\circ}$$
$$=2\left(\frac{1}{\sqrt{2}}\right)^2-\left(2\right)^2$$
$$=2\left(\frac{1}{2}\right)-4$$
$$=1-4$$
$$=-3$$
Hence, the correct answer is Option B
Create a FREE account and get: