In the given figure $$\triangle$$ABC, if $$\theta$$ = $$80^\circ$$, the measure of each of the other two angles will be:
Angles opposite to equal sides in a triangle are equal.
In $$\triangle$$ABC, AC = AB
$$\Rightarrow$$ Â $$\angle$$ABC =Â $$\angle$$ACB
Let $$\angle$$ABC = $$\angle$$ACB = x
In $$\triangle$$ABC,
$$\angle$$ABC +Â $$\angle$$ACB +Â $$\angle$$BAC =Â $$180^\circ$$
$$\Rightarrow$$Â x + x +Â $$\theta$$ =Â $$180^\circ$$
$$\Rightarrow$$Â 2x +Â $$80^\circ$$ =Â $$180^\circ$$
$$\Rightarrow$$Â 2x =Â $$100^\circ$$
$$\Rightarrow$$Â x =Â $$50^\circ$$
$$\Rightarrow$$ Â $$\angle$$ABC = $$\angle$$ACB =Â $$50^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: