If $$\frac{1}{\operatorname{cosec}\theta-1}+\frac{1}{\operatorname{cosec}\theta+1}=2\sec\theta$$, $$0^\circ < \theta < 90^\circ$$, then the value of $$(\cot \theta + \cos \theta)$$ is:
$$\frac{1}{\operatorname{cosec}\theta-1}+\frac{1}{\operatorname{cosec}\theta+1}=2\sec\theta$$
$$\frac{\operatorname{cosec}\theta\ +1+\operatorname{cosec}\theta\ -1}{\operatorname{cosec}^2\theta-1}=2\sec\theta$$
$$\frac{2\operatorname{cosec}\theta\ \ }{\cot^2\theta\ }=2\sec\theta$$
$$\frac{\operatorname{cosec}\theta\ }{\sec\theta\ }\ =\cot^2\theta\ $$
$$\cot\theta\ =\cot^2\theta\ $$
$$\cot^2\theta\ -\cot\theta\ =0$$
$$\cot\theta\ \left(\cot\theta\ -1\right)\ =0$$
$$\Rightarrow$$  $$\cot\theta=0$$ or  $$\cot\theta-1=0$$
$$\Rightarrow$$  $$\cot\theta=0$$ or  $$\cot\theta=1$$
$$\Rightarrow$$  $$\theta=90^{\circ\ }$$ or   $$\theta=45^{\circ\ }$$
Since $$0^\circ < \theta < 90^\circ$$
$$\Rightarrow$$ Â $$\theta=45^{\circ\ }$$
$$\therefore\ $$ $$\cot\theta+\cos\theta=\cot45^{\circ\ }+\cos45^{\circ\ }$$
$$=1+\frac{1}{\sqrt{2}}$$
$$=\frac{\sqrt{2}+1}{\sqrt{2}}$$
$$=\frac{\left(\sqrt{2}+1\right)\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}}$$
$$=\frac{2 + \sqrt2}{2}$$
Hence, the correct answer is Option B
Create a FREE account and get: