Expression : $$\sqrt{\frac{cosecA-1}{cosecA+1}}$$
= $$\sqrt{\frac{\frac{1}{sinA}-1}{\frac{1}{sinA}+1}}$$
= $$\sqrt{\frac{\frac{1-sinA}{sinA}}{\frac{1+sinA}{sinA}}}=\sqrt{\frac{1-sinA}{1+sinA}}$$
= $$\sqrt{\frac{1-sinA}{1+sinA}\times\frac{(1-sinA)}{(1-sinA)}}$$
= $$\sqrt{\frac{(1-sinA)^2}{1-sin^2A}}=\sqrt{\frac{(1-sinA)^2}{cos^2A}}$$
= $$\frac{1-sinA}{cosA} = (\frac{1}{cosA})-(\frac{sinA}{cosA})$$
= $$secA-tanA$$
=> Ans - (B)
Create a FREE account and get: