Expression : $$[\frac{2}{(cotA-tanA)}]$$
= $$2\div(cotA-tanA)$$
= $$2\div(\frac{cosA}{sinA}-\frac{sinA}{cosA})$$
= $$2\div(\frac{cos^2A-sin^2A}{sinAcosA})$$
= $$2\times(\frac{sinAcosA}{cos^2A-sin^2A})$$
= $$\frac{2sinAcosA}{cos^2A-sin^2A}$$
= $$\frac{sin2A}{cos2A}=tan2A$$
=> Ans - (B)
Create a FREE account and get: