Equation 1Â : $$a + b = 10$$
=> $$a = 10 - b$$
Equation 2Â : $$a \times b = 24$$
Substituting value of 'a' in equation 2, we get :
=> $$(10 - b) b = 24$$
=> $$10b - b^2 = 24$$
=> $$b^2 - 10b + 24 = 0$$
=> $$b^2 - 4b - 6b + 24 = 0$$
=> $$b(b - 4) - 6(b - 4) = 0$$
=> $$(b - 4) (b - 6) = 0$$
=> $$b = 4 , 6$$
=> $$a = 6 , 4$$
$$\therefore a^3 + b^3 = (4)^3 + (6)^3$$
= $$64 + 216 = 280$$
Create a FREE account and get: