Given : $$x^3 - y^3 = 81$$ ---------------(i)
and $$x - y = 3$$ -----------(ii)
Cubing both sides,
=> $$(x-y)^3=(3)^3$$
=> $$x^3-y^3-3xy(x-y)=27$$
Substituting values from equations (i) and (ii), we get :
=> $$81-3xy(3)=27$$
=> $$9xy=81-27=54$$
=> $$xy=\frac{54}{9}=6$$ ------------(iii)
Also, $$(x-y)^2=x^2+y^2-2xy$$
Substituting values from equations (ii) and (iii), we get :
=> $$(3)^2=(x^2+y^2)-2(6)$$
=> $$9=(x^2+y^2)-12$$
=> $$x^2+y^2=9+12=21$$
=> Ans - (B)
Create a FREE account and get: