Question 27

The foot of the ladder RS in the following figure is slipping away from the wall RO.

Then the point P(a fixed point on the ladder) lies on

Solution

Let the point P be $$\left(\alpha\ ,B\right)$$

Let OS =a, OR=b and RS = c and $$\angle\ OSR=\theta\ $$ , PS = z

=> a=ccos$$\theta\ $$ and b = c sin$$\theta\ $$

$$\alpha\ =a\ -\ z\ \cos\theta\ $$ and $$\beta\ \ =z\ \sin\theta\ $$

$$\alpha\ \ =\ c\ \cos\theta\ \ -z\ \cos\theta\ $$

=> $$\cos\ \theta\ \ =\ \frac{\alpha}{c-z}$$ and $$\sin\theta\ \ \ =\ \frac{\beta\ }{z}$$

$$\ \frac{\alpha\ ^2}{\left(c-z\right)^2}+\ \frac{\beta\ ^2}{z^2}=1$$ which is an ellipse.


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with solutions PDF
  • Top 500 MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App