The perimeter of base of a right circular cone is 88 cm. If the height of the cone is 48 cm, then what is the total surface area (in cm$$^{2})\ $$of the cone?
Let radius of cone = $$r$$ cm and height = $$h=48$$ cm
Perimeter of base = $$2\pi r=88$$
=> $$2\times\frac{22}{7}\times r=88$$
=> $$r=88\times\frac{7}{44}=14$$ cm
Slant height of cone = $$l=\sqrt{r^2+h^2}$$
=> $$l=\sqrt{196+2304}=\sqrt{2500}$$
=> $$l=50$$ cm
$$\therefore$$ Total surface area of cone = $$\pi r(r+l)$$
= $$(\frac{22}{7}\times14)(14+50)$$
= $$44\times64=2816$$Â $$cm^2$$
=> Ans - (D)
Create a FREE account and get: