An isosceles triangle ABC is right angled at B.D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn from D on the sides AB and Ac respectively of $$\ \triangle ABC.\ $$If AP = a cm, AQ = b cm and $$\ \angle BAD$$= 15$$^\circ$$, sin $$\ 75^\circ$$=
$$\triangle$$ ABC is a right angled isosceles triangle right angled at B
Here $$\angle A = \angle C$$
$$90^\circ+2\angle A = 180^\circ$$
$$\therefore \angle A = \angle C = 45^\circ$$
Given $$\angle BAD = 15^\circ$$
From $$\triangle$$ ABC, $$\angle BAC = \angle BAD+\angle DAQ$$
$$\Rightarrow 45^\circ = 15^\circ+\angle DAQ$$
$$\therefore \angle DAQ = 30^\circ$$
From $$\triangle DAQ, \angle AQD = 90^\circ$$ and $$\angle DAQ = 30^\circ$$
$$\angle AQD+\angle DAQ+\angle ADQ = 180^\circ$$
$$90^\circ+30^\circ+\angle ADQ = 180^\circ$$
$$\Rightarrow \angle ADQ = 60^\circ$$
$$From \triangle ADQ$$,Â
sin $$60^\circ = \frac{AQ}{AD}$$Â
$$\frac{\sqrt{3}}{2} = \frac{b}{AD}$$ ( $$\because$$ sin $$60^\circ = \frac{\sqrt{3}}{2})$$
AD = $$\frac{2b}{\sqrt{3}}$$
In $$\triangle APD, \angle APD = 90^\circ$$ and $$\angle PAD = 15^\circ$$
$$\angle APD+\angle PAD+\angle ADP = 180^\circ$$
$$90^\circ+15^\circ+\angle ADP = 180^\circ$$
$$\Rightarrow \angle ADP = 75^\circ$$
From $$\triangle$$ APD,Â
sin $$75^\circ = \frac{AP}{AD}$$
Substituting AD = $$\frac{2b}{\sqrt{3}}$$ in above equation
$$\Rightarrow$$ sin $$75^\circ = \frac{a}{(\frac{2b}{\sqrt{3}})}$$
$$\therefore$$Â sin $$75^\circ = \frac{\sqrt{3}a}{2b}$$
Create a FREE account and get: