Let C be a point on a straight line AB. Circles are drawn with diameters AC and AB. Let P be any point on the circumference of the circle with diameter AB. If AP meets the other circle at Q, then
In $$\triangle$$ AQC,
$$\angle$$ AQC $$= 90^\circ$$ ($$\because$$ Angle in a semi circle is $$90^\circ$$)
and in $$\triangle$$ APB,
$$\angle$$ APB $$= 90^\circ$$ ($$\because$$ Angle in a semi circle is $$90^\circ$$)
Comparing two triangles $$\triangle$$ APB and $$\triangle$$ AQC,
$$\angle$$ QAC $$= \angle PAB$$
$$\angle$$ AQC $$= \angle APB$$
$$\therefore \triangle APB = \triangle AQC$$
$$\therefore$$ QC // PB
Since we cannot prove that C is exactly midpoint of AB, QC $$= \frac{1}{2}$$PB cannot be proved
Create a FREE account and get: