A point D is taken from the side BC of a right angled triangle ABC, where AB is hypotenuse. Then,
$$\triangle$$ ABC is a right angled triangle right angled at C
$$\Rightarrow$$ $$AB^{2} = AC^2+BC^2$$ ( From Pythagoras theorem )
$$\Rightarrow$$ $$AC^2 = AB^2-BC^2$$Â
From $$\triangle ACD$$, $$AD^2 = AC^2+CD^2$$
Substituting $$AC^2 = AB^2-BC^2$$ in above equation
$$AD^2 = AB^2-BC^2+CD^2$$
$$\Rightarrow$$ $$AB^{2}+CD^{2}=BC^{2}+AD^{2}$$
Create a FREE account and get: