Using AM $$\geq$$ GM, We can say that
$$\dfrac{3^{sinx}+3^{cosx}}{2}$$ $$\geq$$ $$\sqrt{3^{sinx}*3^{cosx}}$$
$$\Rightarrow$$ $$3^{sinx}+3^{cosx}$$ $$\geq$$ $$2*3^\frac{sinx+cosx}{2}$$ ... (1)
We know that -$$\sqrt{A^2+B^2}$$ $$\leq$$ Asinx+Bcosx $$\leq$$ $$\sqrt{A^2+B^2}$$
Therefore, -$$\sqrt{1^2+1^2}$$ $$\leq$$ sinx+cosx $$\leq$$ $$\sqrt{1^2+1^2}$$
$$\Rightarrow$$ -$$\sqrt{2}$$ $$\leq$$ sinx+cosx $$\leq$$ $$\sqrt{2}$$
Hence, we can say that the minimum value of sinx+cosx = -$$\sqrt{2}$$ ... (2)
From equation (1) and (2) we can say that,
$$\Rightarrow$$ $$3^{sinx}+3^{cosx}$$ $$\geq$$ $$2*3^\frac{-\sqrt{2}}{2}$$
$$\Rightarrow$$ $$3^{sinx}+3^{cosx}$$ $$\geq$$ $$2*3^\frac{-1}{\sqrt{2}}$$
Therefore, option B is the correct answer.
Create a FREE account and get: