Expression : $$\frac{p^2}{q^2}+\frac{q^2}{p^2}$$ = 1
=> $$\frac{p^{4}+q^{4}}{p^2q^2}$$ = 1
=> $$p^4+q^4 = p^2q^2$$ --------------Eqn(1)
Now, to find : $$(p^{6}+q^{6})$$
=> $$(p^2)^3 + (q^2)^3$$
Using the formula, $$a^3 + b^3 = (a+b)(a^2+b^2-ab)$$
=> $$(p^2+q^2)(p^4+q^4-p^2q^2)$$
From eqn (1), we get :
=> $$(p^2+q^2)(p^2q^2-p^2q^2)$$
=> $$(p^2+q^2)*0$$
= 0
Create a FREE account and get: