If $$(m+1) = \sqrt{n}+3$$ the value of $$\frac{1}{2}(\frac{m^{3}-6m^{2}+12m-8}{\sqrt{n}}-n)$$
If $$(m+1) = \sqrt{n}+3$$
=> $$m-2 = \sqrt{n}$$ --------------Eqn(1)
to find : $$\frac{1}{2}(\frac{m^{3}-6m^{2}+12m-8}{\sqrt{n}}-n)$$
$$\because (m-2)^3 = m^{3}-6m^{2}+12m-8$$
=> $$\frac{1}{2}(\frac{(m-2)^3}{\sqrt{n}}-n)$$
Using eqn(1), we get :
=> $$\frac{1}{2}(\frac{(\sqrt{n})^3}{\sqrt{n}}-n)$$
=> $$\frac{1}{2}(n-n)$$
= 0
Create a FREE account and get: