Two posts are 4 m apart. Both posts are on same side of a tree. If the angles of depressions of these posts when observed from the top of the tree are $$45^\circ$$ and $$60^\circ$$ respectively, then what is the height of the tree?
GivenĀ : CD is the tree and AB = 4 m
To findĀ : Height of tree = $$h$$ = ?
Solution :Ā In $$\triangle$$ ACD,
=> $$tan(45^\circ)=\frac{CD}{AD}$$
=> $$1=\frac{h}{x+4}$$
=> $$h=x+4$$ -------------(i)
Again, in $$\triangle$$ BCD,
=> $$tan(60^\circ)=\frac{CD}{DB}$$
=> $$\sqrt{3}=\frac{h}{x}$$
=> $$h=x\sqrt{3}$$
=> $$h=(h-4)\sqrt3$$ Ā Ā [Using (i)]
=> $$h=h\sqrt3-4\sqrt3$$
=> $$h(\sqrt3-1)=4\sqrt3$$
=> $$h=\frac{4\sqrt3}{\sqrt3-1}$$
Rationalizing the denominator, we getĀ :
=> $$h=\frac{4\sqrt3}{\sqrt3-1}\times\frac{(\sqrt3+1)}{(\sqrt3+1)}$$
=> $$h=\frac{4\sqrt3(\sqrt3+1)}{(3-1)}$$
=> $$h=2\sqrt3(\sqrt3+1)$$
=> Ans - (C)
Create a FREE account and get: