What is the simplified value of  $$\ \frac{7}{sec^{2} \theta}+ \frac{3}{1+cot^{2} \theta}+ 4\ sin^{2} \theta$$?
Expression : $$\ \frac{7}{sec^{2} \theta}+ \frac{3}{1+cot^{2} \theta}+ 4\ sin^{2} \theta$$
= $$7cos^2\ \theta+\frac{3}{cosec^2\ \theta}+4sin^2\ \theta$$
=Â $$7cos^2\ \theta+3sin^2\ \theta+4sin^2\ \theta$$
=Â $$7cos^2\ \theta+7sin^2\ \theta$$
=Â $$7(cos^2\ \theta+sin^2\ \theta)$$
= $$7\times1=7$$
=> Ans - (D)
Create a FREE account and get: