Question 144

If cot $$\theta=\sqrt{11}\ and\ \theta\ $$is acute, then what is the value of $$(\frac{cosec^{2}\ \theta\ +\ sec^{2}\ \theta}{cosec^{2}\ \theta\ -\ sec^{2}\ \theta})$$?

Solution

Given, cot $$\theta=\sqrt{11}$$

$$(\frac{cosec^{2}\ \theta\ +\ sec^{2}\ \theta}{cosec^{2}\ \theta\ -\ sec^{2}\ \theta})$$ = $$(\frac{1 + cot^{2}\ \theta\ +\ 1 + tan^{2}\ \theta}{1 + cot^{2}\ \theta\ -\ 1 + tan^{2}\ \theta})$$ 

$$\Rightarrow (\frac{1 + 11\ +\ 1 + \frac{1}{11}}{1 + 11\ -\ 1 + \frac{1}{11}})$$ = $$(\frac{\frac{144}{11}}{\frac{120}{11}})$$ = $$\frac{144}{20}$$ 

$$\Rightarrow \frac{6}{5}$$

Hence, option B is the correct answer.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App