If cot $$\theta=\sqrt{11}\ and\ \theta\ $$is acute, then what is the value of $$(\frac{cosec^{2}\ \theta\ +\ sec^{2}\ \theta}{cosec^{2}\ \theta\ -\ sec^{2}\ \theta})$$?
Given, cot $$\theta=\sqrt{11}$$
$$(\frac{cosec^{2}\ \theta\ +\ sec^{2}\ \theta}{cosec^{2}\ \theta\ -\ sec^{2}\ \theta})$$ =Â $$(\frac{1 + cot^{2}\ \theta\ +\ 1 + tan^{2}\ \theta}{1 + cot^{2}\ \theta\ -\ 1 + tan^{2}\ \theta})$$Â
$$\Rightarrow (\frac{1 + 11\ +\ 1 + \frac{1}{11}}{1 + 11\ -\ 1 + \frac{1}{11}})$$Â = $$(\frac{\frac{144}{11}}{\frac{120}{11}})$$Â = $$\frac{144}{20}$$Â
$$\Rightarrow \frac{6}{5}$$
Hence, option B is the correct answer.
Create a FREE account and get: