$$If\ \frac{cos\ \theta}{1+sin\ \theta}+ \frac{cos\ \theta}{1-sin\ \theta}=2\sqrt{2}\ and\ \theta\ $$is acute, then what is the value (in degrees) of $$\theta$$?
Given,Â
$$ \frac{cos\ \theta}{1+sin\ \theta}+ \frac{cos\ \theta}{1-sin\ \theta}=2\sqrt{2}\ $$
$$\cos\theta(\frac{1}{1+sin\ \theta}+ \frac{1}{1-sin\ \theta})=2\sqrt{2}\ $$
$$\cos\theta (\frac{1 - \sin\theta + 1 + \sin\theta}{1^{2} - \sin^{2}\theta}) = 2\sqrt{2}$$
$$\cos\theta (\frac{2}{\cos^{2}\theta}) = 2\sqrt{2}$$
$$\cos\theta = \frac{1}{\sqrt{2}}$$Â
$$\theta = 45^{\circ}$$
Hence, option B is the correct answer.
Create a FREE account and get: