Question 145

$$If\ \frac{cos\ \theta}{1+sin\ \theta}+ \frac{cos\ \theta}{1-sin\ \theta}=2\sqrt{2}\ and\ \theta\ $$is acute, then what is the value (in degrees) of $$\theta$$?

Solution

Given, 

$$ \frac{cos\ \theta}{1+sin\ \theta}+ \frac{cos\ \theta}{1-sin\ \theta}=2\sqrt{2}\ $$

$$\cos\theta(\frac{1}{1+sin\ \theta}+ \frac{1}{1-sin\ \theta})=2\sqrt{2}\ $$

$$\cos\theta (\frac{1 - \sin\theta + 1 + \sin\theta}{1^{2} - \sin^{2}\theta}) = 2\sqrt{2}$$

$$\cos\theta (\frac{2}{\cos^{2}\theta}) = 2\sqrt{2}$$

$$\cos\theta = \frac{1}{\sqrt{2}}$$ 

$$\theta = 45^{\circ}$$

Hence, option B is the correct answer.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App