If sin θ + $$sin^{2}$$ θ = 1, then what is the value of $$(cos^{12}\ \theta\ + 3\ cos^{10}\ \theta+3\ cos^{8}\ \theta\ + cos^{6}\ \theta -1)$$
Given $$sin \theta + sin^{2} \theta = 1$$
$$\Rightarrow sin$$ θ = 1 - $$sin^{2}$$ θ $$\Rightarrow$$ $$sin$$ θ = $$cos^{2}$$ θ .....(1)
Now, $$(cos^{12}\ \theta\ + 3\ cos^{10}\ \theta+3\ cos^{8}\ \theta\ + cos^{6}\ \theta -1)$$
$$(cos^{4} \theta$$ + $$cos^{2} \theta)^{3}$$ - 1
Substitute equation (1) in the above equation
$$(sin^{2} \theta$$ + $$cos^{2} \theta)^{2}$$ - 1
1 - 1 = 0
Hence, option B is the correct answer.
Create a FREE account and get: