If $$(1+ tan^{2} \theta) = \frac{625}{49}\ and\ \theta\ $$is acute, then what is the value of $$\ (\sqrt{sin \theta+cos\ \theta})\ $$?
Given,
$$(1+ tan^{2}\theta)$$ = $$\frac{625}{49}$$Â Â (or) $$sec^{2}\theta$$ =Â $$\frac{625}{49}$$
$$sec\ \theta$$ =Â $$\frac{25}{7}$$Â
$$Cos\ \theta = \frac{7}{25}$$ and $$sin\ \theta = \frac{24}{25}$$Â Â Â
$$\ \sqrt{sin \theta+cos\ \theta}\ = \sqrt{\frac{7 + 24}{25}}$$ = $$\sqrt{\frac{31}{25}}$$Â =Â $$\frac{\sqrt{31}}{5}$$Â Â Â Â Â
Hence, option C is the correct answer. Â
Create a FREE account and get: