Question 14

Which of the following statement(s) is/are CORRECT ?
I. $$(\sqrt{11}+\sqrt{2})>(\sqrt{8}+\sqrt{5})$$
II. $$(\sqrt{10}+\sqrt{3})>(\sqrt{7}+\sqrt{6})$$

Solution

I : $$(\sqrt{11}+\sqrt{2})>(\sqrt{8}+\sqrt{5})$$

Squaring both sides, we get :

L.H.S. = $$(\sqrt{11}+\sqrt2)^2=(11+2+2\sqrt{22})=13+2\sqrt{22}$$

R.H.S. = $$(\sqrt{8}+\sqrt5)^2=(8+5+2\sqrt{40})=13+2\sqrt{40}$$

$$\because$$ $$\sqrt{22}<\sqrt{40}$$, then L.H.S. < R.H.S.

II : $$(\sqrt{10}+\sqrt{3})>(\sqrt{7}+\sqrt{6})$$

Squaring both sides, we get :

L.H.S. = $$(\sqrt{10}+\sqrt3)^2=(10+3+2\sqrt{30})=13+2\sqrt{30}$$

R.H.S. = $$(\sqrt{7}+\sqrt6)^2=(7+6+2\sqrt{42})=13+2\sqrt{42}$$

$$\because$$ $$\sqrt{30}<\sqrt{42}$$, then L.H.S. < R.H.S.

Thus, neither I nor II is correct.

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App