Which of the following statement(s) is/are CORRECT ?
I. $$(\sqrt{11}+\sqrt{2})>(\sqrt{8}+\sqrt{5})$$
II. $$(\sqrt{10}+\sqrt{3})>(\sqrt{7}+\sqrt{6})$$
IÂ : $$(\sqrt{11}+\sqrt{2})>(\sqrt{8}+\sqrt{5})$$
Squaring both sides, we get :
L.H.S. = $$(\sqrt{11}+\sqrt2)^2=(11+2+2\sqrt{22})=13+2\sqrt{22}$$
R.H.S. =Â $$(\sqrt{8}+\sqrt5)^2=(8+5+2\sqrt{40})=13+2\sqrt{40}$$
$$\because$$ $$\sqrt{22}<\sqrt{40}$$, then L.H.S. < R.H.S.
IIÂ : $$(\sqrt{10}+\sqrt{3})>(\sqrt{7}+\sqrt{6})$$
Squaring both sides, we get :
L.H.S. = $$(\sqrt{10}+\sqrt3)^2=(10+3+2\sqrt{30})=13+2\sqrt{30}$$
R.H.S. =Â $$(\sqrt{7}+\sqrt6)^2=(7+6+2\sqrt{42})=13+2\sqrt{42}$$
$$\because$$ $$\sqrt{30}<\sqrt{42}$$, then L.H.S. < R.H.S.
Thus, neither I nor II is correct.
=> Ans - (C)
Create a FREE account and get: