if $$\frac{97}{19} = w + \frac{1}{x + \frac{1}{y}}$$ where x, y and w are all positive integers, the value of $$x + 2y - 3w$$ is
Expression : $$\frac{97}{19} = w + \frac{1}{x + \frac{1}{y}}$$
Breaking the L.H.S. expression = $$5+\frac{2}{19}$$
= $$5+\frac{1}{\frac{19}{2}}$$
= $$5+\frac{1}{9+\frac{1}{2}}$$
Comparing above equation with : $$w+\frac{1}{x+\frac{1}{y}}$$
=> $$w=5, x=9,y=2$$
To find : $$x + 2y - 3w$$
= $$9+2(2)-3(5)=9+4-15=-2$$
=> Ans - (B)