Expression : $$x = 3 + 2\sqrt{2}$$
=> $$\frac{1}{x} = \frac{1}{3 + 2\sqrt{2}}$$
=> $$\frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \times \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}$$
=> $$\frac{1}{x} = 3 - 2\sqrt{2}$$
$$\therefore$$ $$x + \frac{1}{x} = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$$
Squaring both sides, we get :
=> $$(x + \frac{1}{x})^2 = 6^2$$
=> $$x^2 + \frac{1}{x^2} + 2 = 36$$
$$\therefore x^2 + \frac{1}{x^2} = 34$$
Create a FREE account and get: