Question 117

If $$ x + \frac{1}{x} = 99$$, find the value of $$\frac{100x}{2x^2 + 102x + 2}$$

Solution

Given : $$ x + \frac{1}{x} = 99$$

To find : $$\frac{100x}{2x^2 + 102x + 2}$$

= $$\frac{50x}{x^2 + 1 + 51x}$$

Dividing numerator and denominator by $$x$$

= $$\frac{50}{x + \frac{1}{x} + 51}$$

Substituting value of $$(x + \frac{1}{x})$$, we get :

= $$\frac{50}{99 + 51} = \frac{50}{150}$$

= $$\frac{1}{3}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App