Chord PQ is the perpendicular bisector of radius OA of circle with center O (A is a point on the edge of the circle). If the length of Arc PAQ = $$\frac{2\pi}{3}$$. What is the length of chord PQ ?
.
PQ is perpendicular bisector of OA. Also, OP = OQ (radii)
Hence, OPAQ is a rhombus. --------------(i)
Also, $$2\angle PAQ=$$ reflex $$\angle POQ$$ Â Â [The angle subtended at the centre by an arc is twice to that at the circumference]
=> $$2\angle PAQ=360^\circ-\angle POQ$$
=> $$2\angle PAQ+\angle POQ=360^\circ$$
From (i), we have $$\angle PAQ=\angle POQ$$
=> $$3\angle POQ=360^\circ$$
=> $$\angle POQ=120^\circ=\frac{2\pi}{3}$$
We know that, $$r=\frac{l}{\theta}$$
=> $$r=\frac{\frac{2\pi}{3}}{\frac{2\pi}{3}}=1$$ unit
In $$\triangle$$ POB,
=> $$sin(\angle POB)=\frac{PB}{OP}$$
=> $$sin(60^\circ)=\frac{PB}{1}$$
=> $$PB=\frac{\sqrt3}{2}$$
$$\therefore$$ Chord PQ = $$2\times(PB)=2\times\frac{\sqrt3}{2}=\sqrt3$$
=> Ans - (B)
Create a FREE account and get: