Area of a equilateral triangle is $$\frac{\sqrt3}{4}$$*$$a^2$$
Area of a regular pentagon is $$\frac{5}{4}$$*$$\sqrt{1+\frac{2}{\sqrt{5}}}$$*$$a^2$$
Therefore ratio of shaded area to unshaded area = $$\frac{\frac{5}{4}*\sqrt{1+\frac{2}{\sqrt{5}}}}{\frac{5*\sqrt3}{4}}$$.
i.e. $$\frac{\sqrt{1+\frac{2}{\sqrt{5}}}}{{\sqrt3}}$$
therefore our answer is Option 'D'.
Create a FREE account and get: