In a circle with center at O (0,0) and radius 5cm, AB is a chord of length 8 cm. If OM is perpendicular to AB, then the length of OM is:
Given : AB = 8 cm and OB = 5 cm
To find : OM = ?
Solution : The line from the centre of the circle to the chord bisects it at right angle.
=> AM = BM = $$\frac{1}{2}$$ AB
=> BM = $$\frac{8}{2}=4$$ cm
In $$\triangle$$ OBM,
=> $$(OM)^2=(OB)^2-(BM)^2$$
=> $$(OM)^2=(5)^2-(4)^2$$
=> $$(OM)^2=25-16=9$$
=> $$OM=\sqrt{9}=3$$ cm
=> Ans - (A)
Create a FREE account and get: