Question 110

The simplest form of the expression $$\frac{p^2-p}{2p^3+6p^2}+\frac{p^2-1}{p^2+3p}+\frac{p^2}{p+1}$$

Solution

$$\frac{p^2-p}{2p^3+6p^2}$$ = $$\frac{p(p-1)}{2p^2(p+3)}$$ = $$\frac{(p-1)}{2p(p+3)}$$

$$\frac{p^2-1}{p^2+3p}$$ = $$\frac{(p-1)(p+1)}{p(p+3)}$$

$$\frac{p^2}{p+1}$$ = $$\frac{p^2}{p+1}$$

$$\frac{(p-1)}{2p(p+3)}$$ + $$\frac{(p-1)(p+1)}{p(p+3)}$$ + $$\frac{p^2}{p+1}$$ = $$\frac{1}{2p^2}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App