If $$ x = \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5} - 1}}$$, then the value of $$5x^2 - 5x -1 $$ is
Given : $$ x = \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5} - 1}}$$
=>Â $$ x = \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\times (\frac{\sqrt5+1}{\sqrt5+1})}$$
=> $$x=\sqrt{\frac{(\sqrt5+1)^2}{5-1}}$$
=> $$x=\frac{\sqrt5+1}{2}$$ --------------(i)
Squaring both sides, we get : $$x^2=\frac{6+2\sqrt5}{4}$$ --------------(ii)
To find : $$5x^2 - 5x -1 $$
= $$5(x^2-x)-1$$
Substituting values from equations (i) and (ii), we get :
= $$5[(\frac{6+2\sqrt5}{4})-(\frac{\sqrt5+1}{2})]-1$$
=Â $$5\times(\frac{6+2\sqrt5-2\sqrt5-2}{4})-1$$
= $$5\times1-1=4$$
=> Ans - (C)
Create a FREE account and get: