Top CAT Quant Progressions & Series Questions [Download PDF]

Naveen Neredimalli

147

May 27, 2024

Top CAT Quant Progressions & Series Questions [Download PDF]

https://cracku.in/cat-previous-papersPreparing for the CAT exam requires a strong grasp of various quantitative topics, among which Progressions and Series hold a significant place. These questions test your ability to recognize patterns, apply formulas, and think analytically. To help you excel in this crucial area, we've compiled the top 20 CAT Quant Progressions & Series questions. Take free CAT mock tests to familiarize yourself with the exam pattern and gain a clear understanding of how questions are framed.These questions are designed to challenge your understanding and enhance your problem-solving skills. Download the PDF now and start practicing to ensure you’re well-prepared for the CAT Quant section. Here, you can learn all the essential formulas related to CAT Progressions and Series. Additionally, you can review these questions in the PDF, which includes problems from previous years' CAT papers.

Question 1

The value of the sum 7 x 11 + 11 x 15 + 15 x 19 + ...+ 95 x 99 is


Question 2

The arithmetic mean of x, y and z is 80, and that of x, y, z, u and v is 75, where u=(x+y)/2 and v=(y+z)/2. If x ≥ z, then the minimum possible value of x is


Question 3

Let $$t_{1},t_{2}$$,... be real numbers such that $$t_{1}+t_{2}+…+t_{n} = 2n^{2}+9n+13$$, for every positive integer $$n \geq 2$$. If $$t_{k}=103$$, then k equals


Question 4

When opening his fruit shop for the day a shopkeeper found that his stock of apples could be perfectly arranged in a complete triangular array: that is, every row with one apple more than the row immediately above, going all the way up ending with a single apple at the top.
During any sales transaction, apples are always picked from the uppermost row, and going below only when that row is exhausted.
When one customer walked in the middle of the day she found an incomplete array in display having 126 apples totally. How many rows of apples (complete and incomplete) were seen by this customer? (Assume that the initial stock did not exceed 150 apples.)


Question 5

Let $$a_1, a_2, ...$$ be integers such that
$$a_1 - a_2 + a_3 - a_4 + .... + (-1)^{n - 1} a_n = n,$$ for all $$n \geq 1.$$
Then $$a_{51} + a_{52} + .... + a_{1023}$$ equals


Question 6

If $$(2n + 1) + (2n + 3) + (2n + 5) + ... + (2n + 47) = 5280$$, then whatis the value of $$1 + 2 + 3 + .. + n?$$


Question 7

The number of common terms in the two sequences: 15, 19, 23, 27, . . . . , 415 and 14, 19, 24, 29, . . . , 464 is


Question 8

If $$a_1, a_2, ......$$ are in A.P., then, $$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + ....... + \frac{1}{\sqrt{a_n} + \sqrt{a_{n + 1}}}$$ is equal to


Question 9

If the population of a town is p in the beginning of any year then it becomes 3 + 2p in the beginning of the next year. If the population in the beginning of 2019 is 1000, then the population in the beginning of 2034 will be


Question 10

If $$a_1 + a_2 + a_3 + .... + a_n = 3(2^{n + 1} - 2)$$, for every $$n \geq 1$$, then $$a_{11}$$ equals


Question 11

A man is laying stones, from start to end, along the two sides of a 200-meterwalkway. The stones are to be laid 5 meters apart from each other. When he begins, all the stones are present at the start of the walkway. He places the first stone on each side at the walkway’s start. For all the other stones, the man lays the stones first along one of the walkway’s sides, then along the other side in an exactly similar fashion. However, he can carry only one stone at a time. To lay each stone, the man walks to the spot, lays the stone, and then walks back to pick another. After laying all the stones, the man walks back to the start, which marks the end of his work. What is the total distance that the man walks in executing this work? Assume that the width of the walkway is negligible.

Show Answer Explanation

Question 12

If $$x_1=-1$$ and $$x_m=x_{m+1}+(m+1)$$ for every positive integer m, then $$X_{100}$$ equals


Question 13

Let the m-th and n-th terms of a geometric progression be $$\frac{3}{4}$$ and 12. respectively, where $$m < n$$. If the common ratio of the progression is an integer r, then the smallest possible value of $$r + n - m$$ is


Question 14

If $$x_0 = 1, x_1 = 2$$, and $$x_{n + 2} = \frac{1 + x_{n + 1}}{x_n}, n = 0, 1, 2, 3, ......,$$ then $$x_{2021}$$ is equal to


Question 15

The natural numbers are divided into groups as (1), (2, 3, 4), (5, 6, 7, 8, 9), ….. and so on. Then, the sum of the numbers in the 15th group is equal to

Related Blogs