Last 85 Days to CAT 2025 🥳 Get CAT courses by a 5-time 100%iler at upto 75% Off today. Enroll now
Edit MetaData
5Â years, 1Â month ago
How many Distinct triangles can be formed of perimeter 44 when each side is a multiple of 4?
5Â years, 1Â month ago
The answer should be 4. You can try all possibilities, will end up only getting (4,20,20),(8,16,20),(12,12,20) and (12, 16, 16)
5Â years, 1Â month ago
each side is of the for 4k,
So any side we just need to find all possible values of K
We can also do this by dividing the perimeter by 4 and the sides will be the values of k
So now we have perimeter as 11.
use the formula for the number of triangles that can be formed by given perimeter and get the result
Then answer i am getting with the above appraoch is 2 Let me know if it is right answer
2Â years, 1Â month ago
Let 4a, 4b, 4c be the sides of triangle. Then, 4(a+b+c)=44 => a+b+c=11.
We know that a+b>c & a+b+c=11 => c<5.5
(1)c=5 => a+b=6. Thus pairs satisfying this are (1,5), (2,4), (3,3).
(2)c=4 => a+b=4. Pairs are (2,5), (3,4).
(3)c=3 => a+b=8. Pairs are (4,4), (3,5).
(4)c=2 => a+b=9. Pair possible is (4,5).
(5)c=1 => a+b=10. Pair possible is (5,5).
Thus, according to my logic, the answer is 9. I may be wrong as well.