Expression : (sin A - cosec A)(sec A - cos A) (tan A + cot A)
= $$(sinA-\frac{1}{sinA})(\frac{1}{cosA}-cosA)(\frac{sinA}{cosA}+\frac{cosA}{sinA})$$
= $$(\frac{sin^2A-1}{sinA})(\frac{1-cos^2A}{cosA})(\frac{sin^2A+cos^2A}{sinAcosA})$$
Using, $$sin^2A+cos^2A=1$$
= $$(\frac{-cos^2A}{sinA})(\frac{sin^2A}{cosA})(\frac{1}{sinAcosA})$$
= $$\frac{-sin^2Acos^2A}{sin^2Acos^2A}=-1$$
=> Ans - (B)
Create a FREE account and get: