If $$\frac{1}{cos\theta}-\frac{1}{cot\theta}=\frac{1}{p}$$, then what is the value of cos θ?
Expression : $$\frac{1}{cos\theta}-\frac{1}{cot\theta}=\frac{1}{p}$$
=> $$\frac{1}{cos\theta}-\frac{sin\theta}{cos\theta}=\frac{1}{p}$$
=> $$\frac{1-\sqrt{1-cos^2\theta}}{cos\theta}=\frac{1}{p}$$
Let $$cos\theta=x$$
=> $$1-\sqrt{1-x^2} = \frac{x}{p}$$
=> $$1-\frac{x}{p}=\sqrt{1-x^2}$$
Squaring both sides, we get :
=> $$(1-\frac{x}{p})^2=(\sqrt{1-x^2})^2$$
=> $$1+\frac{x^2}{p^2}-2\frac{x}{p}=1-x^2$$
=> $$\frac{x^2}{p^2}-2\frac{x}{p}+x^2=0$$
=> $$\frac{x^2-2xp+x^2p^2}{p^2}=0$$
=> $$x-2p+xp^2=0$$
=> $$x(1+p^2)=2p$$
=> $$x=cos\theta=\frac{2p}{1+p^2}$$
=> Ans - (D)
Create a FREE account and get: