What is the simple value of $$[\frac{cos^{2}\theta}{1+sin\theta}-\frac{sin^{2}\theta}{1+cos\theta}]^{2}$$ ?
Expression : $$[\frac{cos^{2}\theta}{1+sin\theta}-\frac{sin^{2}\theta}{1+cos\theta}]^{2}$$
= $$[\frac{1-sin^2\theta}{1+sin\theta}-\frac{1-cos^2\theta}{1+cos\theta}]^2$$
= $$[\frac{(1-sin\theta)(1+sin\theta)}{1+sin\theta}-\frac{(1-cos\theta)(1+cos\theta)}{1+cos\theta}]^2$$
= $$[(1-sin\theta)-(1-cos\theta)]^2$$
= $$(cos\theta-sin\theta)^2$$
= $$cos^2\theta+sin^2\theta-2sin\theta cos\theta$$
= $$1-sin2\theta$$
=> Ans - (B)
Create a FREE account and get: