Question 95

What is the simple value of $$[\frac{cos^{2}\theta}{1+sin\theta}-\frac{sin^{2}\theta}{1+cos\theta}]^{2}$$ ?

Solution

Expression : $$[\frac{cos^{2}\theta}{1+sin\theta}-\frac{sin^{2}\theta}{1+cos\theta}]^{2}$$

= $$[\frac{1-sin^2\theta}{1+sin\theta}-\frac{1-cos^2\theta}{1+cos\theta}]^2$$

= $$[\frac{(1-sin\theta)(1+sin\theta)}{1+sin\theta}-\frac{(1-cos\theta)(1+cos\theta)}{1+cos\theta}]^2$$

= $$[(1-sin\theta)-(1-cos\theta)]^2$$

= $$(cos\theta-sin\theta)^2$$

= $$cos^2\theta+sin^2\theta-2sin\theta cos\theta$$

= $$1-sin2\theta$$

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App