A quadratic equation : $$ax^2 + bx + c = 0$$ has real roots iff Discriminant, $$D = b^2 - 4ac \geq 0$$
(A) : $$4x^{2}-9x + 6 = 0$$
=> D = $$(-9)^2 - 4(4)(6) = 81 - 96 = -15$$
(B) :Â $$3x^{2}-2x + 6 = 0$$
=>Â D = $$(-2)^2 - 4(3)(6) = 4 - 72 = -68$$
(C) :Â $$2x^{2}-7x + 6 = 0$$
=> D = $$(-7)^2 - 4(2)(6) = 49 - 48 = 1$$
(D) :Â $$x^{2}-2x+2=0$$
=>Â D = $$(-2)^2 - 4(1)(2) = 4 - 8 = -4$$
Thus, the equation :Â $$2x^{2}-7x + 6 = 0$$ has real roots.
Create a FREE account and get: