Given: x - 5 ≤ 2x - 3 and 2x - 1/2 ≥ 5x + 2; then x can take which of the following values?
Expression 1 : x - 5 ≤ 2x - 3
=> $$2x+x \geq 3-5$$
=> $$3x \geq -2$$
=> $$x \geq \frac{-2}{3}$$ ---------(i)
Expression 2 : 2x - 1/2 ≥ 5x + 2
=> $$5x-2x \leq -2-\frac{1}{2}$$
=> $$3x \leq \frac{-5}{2}$$
=> $$x \leq \frac{-5}{6}$$ --------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-2}{3} \leq x \leq \frac{-5}{6}$$
The only value that $$x$$ can take among the options = -1
=> Ans - (A)
Create a FREE account and get: