Question 90

$$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.......+\frac{1}{n(n+1)}$$= ?

Solution

The given series is: $$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.......+\frac{1}{(n+1)}$$
This can be reframed as: $$\frac{1}{1}n-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}........+\frac{1}{n+1}$$ = $$\frac{1}{1}-\frac{1}{n+1}$$ = $$\frac{n}{n+1}$$
Therefore, the correct option is option D.
 


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App