Expression : $$x cosθ - sinθ = 1$$
=> $$x = \frac{1}{cos\theta} + \frac{sin\theta}{cos\theta}$$
=> $$x = sec\theta + tan\theta$$ --------------Eqn(1)
$$\because$$ $$sec^2\theta - tan^2\theta = 1$$
=> $$(sec\theta + tan\theta)(sec\theta - tan\theta) = 1$$
=> $$(sec\theta - tan\theta) = \frac{1}{x}$$ --------------Eqn(2)
Adding eqns(1)&(2)
=> $$2sec\theta = x + \frac{1}{x} = \frac{x^2 + 1}{x}$$
=> $$sec\theta = \frac{x^2 + 1}{2x}$$
Subtracting eqn(2) from (1)
=> $$2tan\theta = x - \frac{1}{x} = \frac{x^2 - 1}{x}$$
=> $$tan\theta = \frac{x^2 - 1}{2x}$$
We know that, $$sin\theta = \frac{tan\theta}{sec\theta}$$
=> $$sin\theta = \frac{x^2 - 1}{2x} * \frac{2x}{x^2 + 1}$$
=> $$sin\theta = \frac{x^2 - 1}{x^2 + 1}$$
To find : $$x^2 - (1 + x^2) sinθ $$
= $$x^2 - (1 + x^2) * \frac{x^2 - 1}{x^2 + 1}$$
= $$x^2 - (x^2 - 1)$$
= 1
Create a FREE account and get: