If $$2[x^2+\frac{1}{x^2}]-2[x-\frac{1}{x}]-8=0$$, then what are the two values of $$x-\frac{1}{x}$$ ?
Given : $$2[x^2+\frac{1}{x^2}]-2[x-\frac{1}{x}]-8=0$$ ------------(i)
Let $$x-\frac{1}{x}=y$$
Squaring both sides,
=>Â $$(x-\frac{1}{x})^2=y^2$$
=> $$x^2+\frac{1}{x^2}-2(x)(\frac{1}{x})=y^2$$
=> $$x^2+\frac{1}{x^2}=y^2+2$$
Substituting it in equation (i), we get :
=> $$2(y^2+2)-2(y)-8=0$$
=> $$2y^2-2y-4=0$$
=> $$y^2-y-2=0$$
=> $$y^2+y-2y-2=0$$
=> $$y(y+1)-2(y+1)=0$$
=> $$(y+1)(y-2)=0$$
=> $$y=-1,2$$
=> Ans - (A)
Create a FREE account and get: