If (x + y + z) = 12, xy + yz + zx = 44 and xyz = 48, then what is the value of $$x^3 + y^3 + z^3$$ ?
Given : $$xy+yz+zx=44$$ and $$xyz=48$$ ---------------(i)
and $$x+y+z=12$$ -------------(ii)
Squaring both sides, we get :
=> $$(x+y+z)^2=(12)^2$$
=> $$(x^2+y^2+z^2)+2(xy+yz+zx)=144$$
=> $$(x^2+y^2+z^2)+2(44)=144$$
=> $$x^2+y^2+z^2=144-88=56$$ -------------(iii)
We know that, $$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$
Substituting values from equations (i),(ii) and (iii),
=> $$x^3+y^3+z^3 - 3(48) = (12)(56-44)$$
=> $$x^3+y^3+z^3-144=144$$
=> $$x^3+y^3+z^3=144+144=288$$
=> Ans - (D)
Create a FREE account and get: