If $$\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$$, then what is the value of x?
Expression : $$\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$$
Rationalizing the denominator,
=>Â $$\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}\times \frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}+\sqrt{5-x}}=3$$
=> $$\frac{[(\sqrt{5+x})+(\sqrt{5-x})]^2}{(\sqrt{5+x})^2-(\sqrt{5-x})^2}=3$$
=> $$\frac{(5+x)+(5-x)+2(\sqrt{5+x})(\sqrt{5-x})}{(5+x)-(5-x)}=3$$
=> $$\frac{10+2\sqrt{25-x^2}}{2x}=3$$
=> $$5+\sqrt{25-x^2}=3x$$
=> $$3x-5=\sqrt{25-x^2}$$
Squaring both sides, we get :
=> $$(3x-5)^2=(\sqrt{25-x^2})^2$$
=> $$9x^2+25-30x=25-x^2$$
=> $$10x^2-30x=0$$
=> $$10x(x-3)=0$$
=> $$x=0,3$$ Â Â [But $$x$$ can't be zero because the denominator can't be zero]
=> Ans - (D)
Create a FREE account and get: