Given : x = 5 - 2√6
=> $$x=3+2-2\sqrt{(3)(2)}$$
=> $$x=(\sqrt3)^2+(\sqrt2)^2-2(\sqrt3)(\sqrt2)$$
=> $$x=(\sqrt3-\sqrt2)^2$$
=> $$\sqrt{x}=\sqrt3-\sqrt2$$ -----------(i)
=> $$\frac{1}{\sqrt{x}}=\frac{1}{\sqrt3-\sqrt2}$$
=> $$\frac{1}{\sqrt{x}}=\frac{1}{\sqrt3-\sqrt2}\times\frac{(\sqrt3+\sqrt2)}{(\sqrt3+\sqrt2)}$$
=> $$\frac{1}{\sqrt{x}}=\frac{\sqrt3+\sqrt2}{3-2}=\sqrt3+\sqrt2$$ -------------(ii)
To find : $$\sqrt{x}+\frac{1}{\sqrt{x}}$$
Using equations (i) and (ii), we get :
= $$(\sqrt3-\sqrt2)+(\sqrt3+\sqrt2)$$
= $$2\sqrt3$$
=> Ans - (C)
Create a FREE account and get: