Given : $$x=\frac{\sqrt2+1}{\sqrt2-1}$$
=> $$x=\frac{\sqrt2+1}{\sqrt2-1}\times\frac{(\sqrt2+1)}{(\sqrt2+1)}$$
=> $$x=\frac{(\sqrt2+1)^2}{2-1}$$
=> $$x=3+2\sqrt2$$ -------------(i)
Squaring both sides, we get :
=> $$x^2=(3+2\sqrt2)^2$$
=> $$x^2=17+12\sqrt2$$ ------------(ii)
To find : $$\frac{x^5+x^4+x^2+x}{x^3}$$
= $$\frac{x^4+x^3+x+1}{x^2}$$
= $$\frac{x^2(x^2+x)+(x+1)}{x^2}$$
Substituting values from equations (i) and (ii)
= $$\frac{(17+12\sqrt2)(17+12\sqrt2+3+2\sqrt2)+(3+2\sqrt2+1)}{17+12\sqrt2}$$
= $$\frac{(17+12\sqrt2)(20+14\sqrt2)+(4+2\sqrt2)}{17+12\sqrt2}$$
= $$\frac{(340+238\sqrt2+240\sqrt2+336)+(4+2\sqrt2)}{17+12\sqrt2}$$
= $$\frac{680+480\sqrt2}{17+12\sqrt2}$$
= $$\frac{40(17+12\sqrt2)}{17+12\sqrt2}=40$$
=> Ans - (A)
Create a FREE account and get: