Two chords AB and CD of a circle with centre O intersect at P. If $$\angle APC$$ = $$40^\circ$$. Then the value of $$\angle AOC$$Â + $$\angle BOD $$Â is
Arc AC subtends $$\angle AOC$$ at the centre and $$\angle ABC$$ at the circumference.
Similarly ,
$$\angle BOD = 2\angleBCD$$
=$$\angle AOC + \angle BOD$$
=2($$\angle ABC + \angle BCD$$)
= 2 $$\angle APC = 2\times 40\degree = 80\degree$$Â
So, the answer would be option c)$$80^\circ$$
Create a FREE account and get: