Given : $$\frac{x + y}{x - y} = \frac{11}{1}$$
=> $$x + y = 11x - 11y$$
=> $$y + 11y = 11x - x$$ => $$12y = 10x$$
=> $$y = \frac{5x}{6}$$
To find : $$\frac{5x + 3y}{x - 2y}$$
= $$[5x + 3(\frac{5x}{6})] \div [x - 2(\frac{5x}{6})]$$
= $$(5x + \frac{5x}{2}) \div (x - \frac{5x}{3})$$
= $$(\frac{15x}{2}) \div (\frac{-2x}{3})$$
= $$\frac{15x}{2} \times \frac{-3}{2x} = \frac{-45}{4}$$
=> Ans - (C)
Create a FREE account and get: