Question 81

If (x + y):(x - y) = 11:1, find value of (5x + 3y)/(x - 2y).

Solution

Given : $$\frac{x + y}{x - y} = \frac{11}{1}$$

=> $$x + y = 11x - 11y$$

=> $$y + 11y = 11x - x$$ => $$12y = 10x$$

=> $$y = \frac{5x}{6}$$

To find : $$\frac{5x + 3y}{x - 2y}$$

= $$[5x + 3(\frac{5x}{6})] \div [x - 2(\frac{5x}{6})]$$

= $$(5x + \frac{5x}{2}) \div (x - \frac{5x}{3})$$

= $$(\frac{15x}{2}) \div (\frac{-2x}{3})$$

= $$\frac{15x}{2} \times \frac{-3}{2x} = \frac{-45}{4}$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App