Question 80

If 5x-­5 (3x-1) < 4x -1 < 2 + 2x, then x can take which of the following values?

Solution

Expression 1 : 5x-­5 (3x-1) < 4x -1

=> $$5x-15x+5$$ < $$4x-1$$

=> $$10x+4x$$ > $$5+1$$

=> $$14x$$ > $$6$$

=> $$x$$ > $$\frac{3}{7}$$ -----------(i)

Expression 2 : 4x -1 < 2 + 2x

=> $$4x-2x$$ < $$2+1$$

=> $$2x$$ < $$3$$

=> $$x$$ < $$\frac{3}{2}$$ ----------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{3}{7}$$ < $$x$$ < $$\frac{3}{2}$$

The only value that $$x$$ can take among the options = 1

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App